Effect of adrenalectomy on miniature inhibitory postsynaptic currents in the paraventricular nucleus of the hypothalamus.
نویسندگان
چکیده
Within the rat paraventricular nucleus of the hypothalamus two types of neurons have been distinguished based on morphological appearance, i.e., parvocellular and magnocellular neurons. The parvocellular neurons play a key role in regulating the activity of the hypothalamo-pituitary-adrenal axis, which is activated, e.g., after stress exposure. These neurons receive humoral negative feedback via the adrenal hormone corticosterone but also neuronal inhibitory input, either directly or transsynaptically relayed via GABAergic interneurons. In the present study we examined to what extent the neuronal GABAergic input is influenced by the humoral signal. To this end, miniature inhibitory postsynaptic currents (mIPSCs) were recorded in parvo- and magnocellular neurons of adrenalectomized rats, which lack corticosterone, and in sham-operated controls. Under visual control neurons in coronal slices containing the paraventricular nucleus were designated as putative parvocellular or magnocellular neurons: the former were located in the medial part of the nucleus and displayed a small fusiform soma; the latter were mostly located in the lateral part and were recognized by their large round soma. Compared with putative magnocellular neurons, parvocellular neurons generally exhibited a lower membrane capacitance, lower mIPSC frequency, and smaller mIPSC amplitude. Following adrenalectomy, the mIPSC frequency was significantly enhanced in parvo- but not magnocellular neurons. Other properties of the cells were not affected. In a second series of experiments we examined whether the increase in mIPSC frequency was due to the absence of corticosterone or caused by other effects related to adrenalectomy. The data support the former explanation since implantation of a corticosterone releasing pellet after adrenalectomy fully prevented the change in mIPSC frequency. We conclude that, in the absence of humoral negative feedback, local GABAergic input of parvocellular neurons in the paraventricular nucleus is enhanced. This may provide a compensatory mechanism necessary for maintaining controllable network activity.
منابع مشابه
Effect of interaction between acute administration of morphine and cannabinoid compounds on spontaneous excitatory and inhibitory postsynaptic currents of magnocellular neurons of supraoptic nucleus
Objective(s): Opioids and cannabinoids are two important compounds that have been shown to influence the activity of magnocellular neurons (MCNs) of supraoptic nucleus (SON). The interaction between opioidergic and cannabinoidergic systems in various structures of the brain and spinal cord is now well established, but not in the MCNs of SON. Materials and methods: In this study, whole cell pat...
متن کاملEffects of Ketamine on Neuronal Spontaneous Excitatory Postsynaptic Currents and Miniature Excitatory Postsynaptic Currents in the Somatosensory Cortex of Rats
Background: Ketamine is a commonly used intravenous anesthetic which produces dissociation anesthesia, analgesia, and amnesia. The mechanism of ketamine-induced synaptic inhibition in high-level cortical areas is still unknown. We aimed to elucidate the effects of different concentrations of ketamine on the glutamatergic synaptic transmission of the neurons in the primary somatosensory cortex b...
متن کاملBDNF silences GABA synapses onto hypothalamic neuroendocrine cells through a postsynaptic dynamin-mediated mechanism
In the paraventricular nucleus of the hypothalamus (PVN), experimental stress paradigms which suppress GABA inputs to parvocellular neuroendocrine cells (PNCs) also increase the expression of brain derived neurotrophic factor (BDNF). In the adult CNS, BDNF regulates the efficacy of GABAergic transmission, but its contributions to functional changes at inhibitory synapses in the PVN have not bee...
متن کاملAdrenalectomy potentiates noradrenergic suppression of GABAergic transmission in parvocellular neurosecretory neurons of hypothalamic paraventricular nucleus.
Glucocorticoids are known to regulate both the noradrenergic and GABAergic inputs to the paraventricular nucleus (PVN). However, little is known about the effects of glucocorticoids on the interaction of these two input systems. Here we examined the effects of bilateral adrenalectomy (ADX) on the noradrenergic modulation of GABAergic transmission in the type II PVN neurons labeled with a retrog...
متن کاملBrain-derived neurotrophic factor silences GABA synapses onto hypothalamic neuroendocrine cells through a postsynaptic dynamin-mediated mechanism.
In the paraventricular nucleus of the hypothalamus (PVN), experimental stress paradigms that suppress gamma-aminobutyric acid (GABA) inputs to parvocellular neuroendocrine cells (PNCs) also increase the expression of brain-derived neurotrophic factor (BDNF). In the adult CNS, BDNF regulates the efficacy of GABAergic transmission, but its contributions to functional changes at inhibitory synapse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 89 1 شماره
صفحات -
تاریخ انتشار 2003